Biological			T
Component	Symbol	Units	Equation
Chemical	C _B	pg/kg	$C_B = \{k_1*(m_O*C_{WD}+m_P*C_{WD.P}) + k_D*$
concentration in		WW ww	$\Sigma Pi*C_{D,i}$ /($k_2+k_E+k_C+k_M$)
the organism			Equation 1
Chemical	$C_{D,i}$	pg/kg ww	same as above; included to indicate that the
concentration in			general equation is also used to estimate
orey item <i>i</i>			chemical concentrations in prey species
			Equation 1
Organism-water	K _{BW}	unitless	$K_{BW}=k_1/k_{2}=v_{LB}*K_{OW}+V_{NP}*\beta*K_{OW}+v_{WP}$
partition coefficient			,,
on a wet weight basis			Equation 2
Rate constant for	k ₁	L/kg/day	$k_1 = E_w * G_v / W_B$
aqueous uptake (fish,	_	, 0, ,	
nvertebrates and			Equation 4
zooplankton)			•
Gill ventilation rate	Gv	L/d	$G_V = 1400*W_B^{0.65}/C_{OX}$
		,	Equation 5
Respiratory surface	E _w	unitless	E _w = (1.85 + (155/K _{ow})) ⁻¹
chemical uptake			(== , ==,
efficiency			Equation 7
Rate constant for	k ₁	L/kg/day	$k_1 = (A + (B/K_{ow}))^{-1}$
agueous uptake		, 0, ,	(A and B values from literature)
algae, phytoplankton			Equation 8
and aquatic			•
macrophytes)			
Rate constant for	k ₂	day ⁻¹	$k_2 = k1/K_{BW}$
chemical elimination			
via the respiratory			Equation 9
area (gill)			
Phytoplankton-water	K _{PW}	unitless	$K_{PW} = v_{LP} * K_{OW} + v_{NP} * 0.35 * K_{OW} + v_{WP}$
partition coefficient			
on a wet weight basis			Equation 10
Rate constant for	k _D	kg food/kg	$k_D = E_D * G_D / W_B$
chemical uptake via		organism/day	
ngestion and			Equation 11
digestion of food and			
water			
Dietary chemical	E _D	unitless	E _D = (3.0*10 ⁻⁷ *K _{OW} +2.0) ⁻¹
transfer efficiency			Equation 12
Feeding rate - other	G _D	kg/d	$G_D = 0.022*W_B^{0.85}*e^{(0.006*T)}$
species			Equation 13
Feeding rate - filter-	G _D	kg/d	$G_D=G_V*C_s*_{\sigma}$
feeders			Equation 14

Commented [BLJ1]: Changed case to be consistent with rest of document.

Commented [BLJ2]: Two Equation 1's

Commented [BLJ3]: No Equation 3

(OK. I found it below. Perhaps you should put an empty row here and indicate in that row that "(Equation 3 is found below in the discussion of chemical model components)" Alternatively, perhaps it would better to renumber equations.

Commented [BLJ4]: No Equation 6. (See comment on equation 3 above.)

Commented [BLJ5]: No decimal point in original. Is this correct?

Commented [BLJ6]: Sigma term not defined. Might there be other terms in this table that are similarly not defined??

Table B-3: Arnot & Gobas Equations					
Component	Symbol	Units	Equation		
Rate constant for chemical elimination via excretion into egested feces	k _E	day ⁻¹	$k_E = G_F * E_D * K_{GB} / W_B$ Equation 15		
Partition coefficient of the chemical between the contents of the gastrointestinal tract and the organism	K _{GB}	unitless	$\begin{split} K_{GB} &= (v_{LG}*K_{OW}+v_{NG}*\beta*K_{OW}+v_{WG})/\\ (v_{LB}*K_{OW}+v_{NB}*\beta*K_{OW}+v_{WB}) \end{split}$ Equation 16		
Fecal egestion rate	G_F	kg/d	$G_F = \{ (1-\delta_L)^* V_{LD}) + (1-\epsilon_L)^* V_{ND} + (1-\epsilon_N)^* V_{WD} \}^* G_D$ Equation 17		
Lipid fraction of gut contents	V _{LG}	kg lipid/kg digesta ww	$\begin{aligned} v_{LG} = & (1-\epsilon_L)^* v_{LD} / [(1-\epsilon_L)^* v_{LD} + (1-\epsilon_N)^* v_{ND} + (1-\epsilon_W)^* v_{WD}] \\ & \text{Equation 18} \end{aligned}$		
NLOM fraction of gut contents	V _{NG}	kg NLOM/kg digesta ww	$\begin{aligned} v_{NG} = & (1-\epsilon_L)^* v_{ND} / [(1-\epsilon_L)^* v_{LD} + (1-\epsilon_N)^* v_{ND} + (1-\epsilon_W)^* v_{WD}] \\ \text{Equation 19} \end{aligned}$		
Water fraction of gut contents	V _{WG}	kg water/kg digesta ww	$\begin{split} v_{WG} = & (1 - \epsilon_L) * v_{WD} / [(1 - \epsilon_L) * v_{LD} + (1 - \epsilon_N) * v_{ND} + (1 - \epsilon_N) * v_{ND}] \\ = & (1 - \epsilon_L) * v_{WD}] \\ & Equation 20 \end{split}$		
Rate constant for growth of aquatic organisms	k _G	day ⁻¹	$\begin{aligned} & K_G = 0.0005 \times W_B^{-0.2} \\ & \text{Equation 21} \end{aligned}$		
Rate constant for metabolic transformation of chemical	k _M	day ⁻¹	Metabolism of PCB and DDE are not expected to be significant for application of the model to Portland Harbor. Estimates for k _M were, however, identified in the model calibration process		
Overall lipid content of the diet	V _{LD}	kg lipid/kg food ww	$v_{LD} = \sum P_i^* v_{LB,i}$ Total dietary lipid		
Overall NLOM content of the diet	V _{ND}	kg NLOM/kg food ww	$v_{ND} = \sum P_i * v_{NB,i}$ Total dietary non-lipid organic matter		
Overall water content of the diet	V _{WD}	kg water/kg food ww	$\begin{aligned} v_{WD} &= \Sigma P_i * v_{WB,i} \\ & \text{Total dietary water} \end{aligned}$		
Chemical					
Component	Symbol	Units	Equation		
Bioavailable Solute Fraction	ф	unitless			
Dissolved oxygen concentration of water (RM 2 to RM 11)	C _{ox}	mg 0₂/L	C _{OX} = (-0.24*T+14.04)*0.9 Equation 6		

Table B-3: Arnot & Gobas Equations					
Component	Symbol	Units	Equation		
Freely dissolved	C _{WD,P}	ng/L	$C_{WD,P} = C_{S,OC} * \frac{\delta_{OCS}}{\delta_{OCS}} / K_{OC}$		
chemical			,		
concentration in the			Equation 22		
pore water					
Chemical	C _{s,oc}	pg/kg dw OC	$C_{S,OC} = C_S/OC_{Sed}$		
concentration in					
the sediment, organic			Equation 23		
carbon normalized					
Freely dissolved	C _{WD}	ng/L	$C_{WD} = C_{WT} * \phi$		
chemical					
concentration in the			(See Equation 1)		
water (total PCBs as					
congeners and 4,4'-					
DDE)					
Organic carbon-water	Log Kqc	unitless	$Log K_{OC} = Log_{10}(0.35 * 10^{Log Kow})$		
partition coefficient					
(total PCBs as Aroclors					
and 4,4'-DDE)					

Commented [BLJ7]: I don't believe this is defined elsewhere. (I found it in text, but perhaps it could be defined here as well to make table useful independent of text.)